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LETTER TO THE EDITOR 

Note on equivalent Lagrangians and symmetries 
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Instituut voor Theoretische Mechanica, Rijksuniversiteit Gent, Krijgslaan 281, B-9000 
Gent, Belgium 

Received 14 January 1983 

Abstract. We show that every ordered pair of equivalent Lagrangians determines an 
equivalence class of dynamical symmetries of non-Noether type. Its explicit construction 
merely requires a particular solution of a single partial differential equation. Various 
related aspects are discussed. 

Many recent papers deal with aspects of the study of symmetries and first integrals 
for second-order ordinary differential equations. For Lagrangian systems, the best 
known type of symmetries are of course the Noether symmetries, which directly 
provide a corresponding first integral, but a number of interesting features have been 
revealed concerning non-Noether symmetries too. For a few of these, one can consult 
e.g. Lutzky (1979, 1982a, b), Crampin (1980), Gonzalez-Gasc6n and Rodriguez- 
Camino (1980a, b, c), Steeb (1982), Sarlet and Cantrijn (1981b). One specific property 
which was observed by many authors is this: when a point symmetry of a Lagrangian 
system is of non-Noether type, it leads to an equivalent Lagrangian (or sometimes 
only a 'subordinate' one). See in this respect Marmo and Saletan (1977), Lutzky 
(1978) and Prince (1983). Prince made an attempt to generalise this property for 
other than point symmetries. So far, however, one is led to believe that for velocity- 
dependent symmetries no general rule exists by which non-Noether symmetries could 
be associated to equivalent Lagrangians. But what about the converse? Whether a 
given pair of equivalent Lagrangians can lead to a dynamical symmetry was also 
termed an open question by Prince. We wish to show here that this question at least 
has a simple answer: any two equivalent Lagrangians yield two corresponding non- 
Noether symmetries in a quite unique way. Their construction, moreover, is relatively 
simple and merely requires a particular solution of a single partial differential equation. 

Consider a given second-order vector field 

r = a / a t + q '  a / a q i + d ( t ,  q ,q)  a/aqi, (1) 
which is supposed to be derivable from a regular Lagrangian L, that is, we have 
i d e ( L )  = 0, where 8(L)  is the Cartan form 

e(L)=Ldt+(aL/aq')(dq'-q' dt). (2) 
A dynamical symmetry of (1) is any vector field Y =~a/a t+[ ' a /aq '  +7'a/atji whose 
Lie bracket with r yields a multiple of r. As is customary when dealing with Lagrangian 
systems, we define two dynamical symmetries to be equivalent when they differ by a 
multiple of r (see e.g. Sarlet and Cantrijn 1981a). Each equivalence class of symmetries 
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then contains a representative F = pia/aqi + v'a/aq', which is a genuine symmetry 
of r in the sense that [ p, r] = 0, or equivalently 

v i  = '1, r(v') = Y(A'). (3) 

CL i = 6' - q iT, (4) 

Y is called a point symmetry when T and 6' do not depend on the 4. Y is a Noether 
symmetry with respect to L when LZ'ydO(L) = 0. The key relation in Prince's attempt 
to associate an equivalent Lagrangian with a given non-Noether symmetry Y is 

The connection between Y and P is determined by 

v i  = T i  - A ~ T .  

9 @ ( L )  = O(L') +df. ( 5 )  

In the present context, we study this relation under the assumption that an equivalent 
(regular) Lagrangian L' is given and Y is to be determined. 

Lemma 1. If Y satisfies ( 5 )  and (L,  L') are equivalent Lagrangians, then Y is a 
dynamical symmetry. 

Proof. From i&(L) = i&(L') = 0 and LZ'y dO(L) = dO(L') it follows that 

i f r , y ]  de(L) = i r 9 ~  dO(L)-Zyir de(L) = 0, 

which in view of the regularity of L implies that [ Y, r] is a multiple of r. 
We are now left with the question whether a Y satisfying ( 5 )  exists and how to 

construct it. To this end it is worthwhile recognising first the following necessary 
conditions. 

Lemma 2. If Y satisfies ( 5 ) ,  we have 

(a*L/ag'aq') (6' - 4 ' ~ )  = -aG/aq', T(G) = -L', ( 6 0 )  

with G =f-(Y,  8(L)).  (7) 

Proof. Equation ( 5 )  can trivially be rewritten as 

iy dO(L) = O(L') +dG, (8) 
with G as in (7). Taking the inner product of (8) with a/acj' and r respectively 
immediately yields (6). 

The main observation to make now is that finding a particular solution G of the 
single partial differential equation (66) is sufficient to construct a dynamical symmetry 
Y satisfying ( 5 ) .  

Theorem 1. Let L' be an equivalent Lagrangian and G be an arbitrary particular 
solution of (66); define p i  =5'  -4'7 by the algebraic relations (6a) and set 

T i  = r([i)-qir(T) (or v i  = r($)). (9) 
Then Y (or p) defines an equivalence class of symmetries associated with the pair 
(L, L') through ( 5 ) .  
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Proof. Contracting dd(L) with vector fields defines a mapping from vector fields into 
one-forms, the kernel of which is one dimensional. The condition (66) guarantees 
that 6(L’)+dG lies in the range of that mapping (see e.g. Crampin 1977). Therefore, 
there exists a vector field ?(7‘, e, f i )  satisfying 

i p d6(L) = d(L’) + dG. (10) 

From (10) and lemma 2, it is clear that (7‘, e)  satisfy (6a) too, hence we have 

? -4iF =li -4i7. (11) 
In addition, (10) implies that ? satisfies a relation of type ( 5 )  and therefore is a 
dynamical symmetry. This in particular implies (according to the conditions (3) and 
(4)) that 

6‘ = r(?)-qT(;). (12) 

Defining a function h by h = 7‘- T ,  the relations (9), (11) and (12) straightforwardly 
yield Y = ? - h r ,  from which the result follows. 

Concerning the degree of arbitrariness in determining Y, we note that if GI is a 
particular solution of (66), any other solution G1 differs from GI by a constant of the 
motion F. If pi  and p i  denote the corresponding symmetry components, determined 
through (6a), their difference p i  will satisfy 

(a2L/aqia4j) pi = -aF/aq‘, T(F) = 0, (13) 

which is sufficient to conclude that we are dealing with a Noether symmetry with 
respect to L (Sarlet and Cantrijn 1981a). We therefore can state: 

Corollary 1. Apart from the previously discussed equivalence relation, the non- 
Noether symmetry Y corresponding to the ordered pair (L, L’) is unique up to an 
arbitrary Noether-symmetry with respect to L. 

Obviously, we can interchange the role of L and L’ in everything above. In other 
words, we can search for a particular solution G’ of the equation 

I‘(G’) = -L. (14) 
The procedure of theorem 1 then determines another non-Noether symmetry Y’, 
corresponding to the ordered pair (L’, L). Now, contraction of a Cartan form with 
two dynamical symmetries always produces a first integral. Many authors have 
discussed means of associating first integrals with a couple of equivalent Lagrangians 
(see some of the earlier citations and also Hojman and Harleston (1981)). In the 
present context, we here identify a different and rather natural procedure for associat- 
ing two first integrals with the pair (L, 15’). 

Corollary 2. To each pair of equivalent Lagrangians L and L’ correspond two first 
integrals F and F’, defined by 

i yiy dO(L) = F, (15) 

F = Y’(G)+(Y, e@‘)), F’= Y(G’)+(Y, e(L)) .  (16) 

iyi y ,  dd(L’) = F’. 

In terms of G and G’, we have 
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Some final remarks are in order now. In general, finding a dynamical symmetry 
Y of a second-order vector field r requires, in accordance with (3), solving n partial 
differential equations of second order. We have seen here that when two equivalent 
Lagrangians are known, a symmetry can be obtained by solving a single partial 
differential equation of first order. This is of course not the only instance of that sort. 
Indeed, a similar statement certainly holds when only one Lagrangian is known via 
Noether’s theorem, the partial differential equation then being the Liouville equation 
r(F) = 0. But there is more! Indeed, it is clear that the whole procedure of theorem 
1 remains valid when we let L and L’ coincide, We are then in fact talking about a 
conformal symmetry of the two-form de  and as such are falling back on a particular 
case of the theory developed by Gonzllez-Gascon and Rodriguez-Camino (1980a, b). 
Explicitly, we could take the function G‘ satisfying (14) and replace G by G’ in the 
right-hand side of (6a)  to obtain a dynamical symmetry X, satisfying LfxdO(L) = di3(L). 
For two equivalent Lagrangians, our functions G and G’ therefore determine four 
symmetries Y, Y’ ,  X, X’, which of course need not be independent. 

As an illustrative example, consider the equivalent Lagrangians 

L = i ( 4 :  - 4 : )  -$a (4: -4: 1 - b q 1 4 2 ,  (17) 

(18) L ‘ 4 1 4 2  - a4 1 4 2  - % (4  - 9 ), 

where a and 6 are constants. Equation (66)  has the particular solution 

(19) 

G’ = i ( q 2 ( i 2 - q 1 4 1 )  (20) 

G =  -1 2 ( 4 1 4 2 + 4 2 4 1 ) ,  

while 

solves (14). The corresponding symmetries are given by 

We are indebted to Frans Cantrijn for valuable discussions and to Professor Mertens 
for his interest in our work. 

References 

Crampin M 1977 Int.  J. “heor. Phys. 16 741-54 
- 1980 Phys. Lett. 79A 138-40 
Gonzalez-Gascon F and Rodriguez-Camino E 1980a Leu. Nuooo Cimento 27 363-8 
- 1980b Lett. Nuooo Cimento 29 113-9 
- 1980c Lett. Nuouo Cimento 29 310-4 
Hojman S and Harleston H 1981 J.  Math. Phys. 22 1414-9 
Lutzky M 1978 J. Phys. A:  Math. Gen. 11 249-58 
- 1979 Phys. Lerr. 72A 86-8 
- 1982a Phys. Lett. 87A 274-6 
- 1982b J. Phys. A:  Math. Gen. 15 L87-91 



Letter to the Editor 

Marmo G and Saletan E J 1977 Nuovo Cimenfo 40B 67-89 
Prince G 1983 Bull. Austr. Mufh. Soc. 27 53-71 
Sarlet W and Cantrijn F 1981a Siam Reo. 23 467-94 
- 1981b J. Phys. A: Math. Gen. 14 479-92 
Steeb W-H 1982 Hadronic J. 5 1738-47 

L233 


